Towards More Accurate and More Incentive Source Address Validation in the Internet

Dan Li (Tsinghua University)

Jul, 2022

Outline

- **□**Background
- □Gap Analysis & Requirement
- **□**SAVNET Solution
- **DIETF SAVNET WG**

SAV is Important and Challenging

■SAV (source address validation) is important

- ◆Source address spoofing leads to various malicious attacks, represented by reflective DDoS attack
- ◆Network devices deploy SAV to permit traffic with valid source address and block traffic with invalid source address
- ◆Since 2014, the MANRS initiative is calling on network operators to implement SAV as close to the source as possible

■SAV is challenging

- ◆Accuracy: avoid improper block and reduce improper permit as much as possible
- ◆incentive: when partially deployed, deployers can get benefit
- ◆Cost: the deployment cost should be affordable

Potential Attacks by Source Address Spoofing

■Most typical attack by source address spoofing: reflective DDoS

- □Other potential attacks [RFC 6959]
 - ◆Blind attacks: single-packet attacks, flood-based DoS, poisoning attacks, spoof-based worm/malware propagation, accounting subversion
 - ◆Non-blind attacks: man-in-the-middle, third-party recon

IETF Efforts for SAV Mechanisms

SAV is a problem with long history of attention in IETF

- □Ingress filtering/ACL based SAV [RFC 2267&2827, BCP 38], Jal 1998 May 2000
 - **♦**Problem: manual configuration
- □Strict-uRPF / Feasible-uRPF [RFC 3704, BCP 84], Mar 2004
 - ◆ Problem: improper block under asymmetric routing
- □Feasible-uRPF / Loose-uRPF [RFC 3704, BCP 84], Mar 2004
 - ◆ Problem: improper permit
- **SAVI** [RFC 6620, 6959, 7039, 7219, 7513, 8074], May 2012 Feb 2017
 - ◆Host-level SAV in access networks (enterprise networks)
- □EFP(enhanced feasible path)-uRPF [RFC 8704, BCP 84], Feb 2020
 - ◆Mitigating the problem of strict-uRPF / feasible-uRPF in some cases

Necessity of New Intra-/Inter-domain SAV Mechanisms

- □SAVA architecture [RFC 5210] divides SAV into three checking levels
 - ◆Access-network SAV, intra-domain SAV, inter-domain SAV
- □SAVI for access-network SAV is not enough

- ◆The number of operators for access networks is huge, so it is difficult to require all access networks to deploy SAVI
- ◆When some access networks do not deploy SAVI, intra-domain and inter-domain SAV can help filter spoofing traffic as close to the source as possible
- □uRPF-based technology for intra-/inter-domain SAV is not enough
 - ◆Strict-uRPF, feasible-uRPF and loose-uRPF have well-known improper block or improper permit problems
 - ◆EFP-uRPF does not completely solve the problem

Outline

- **□**Background
- □Gap Analysis & Requirement
- **□**SAVNET Solution
- **DIETF SAVNET WG**

A Typical Intra-domain Scenario

Problem #1: Improper Block (1)

- □ If applying strict uRPF in Router 1 and Router 2
 - ◆Improper block
- □If applying ACL (ingress filtering) in Int 1 and Int 2
 - ◆Manual update givenprefix update in Subnet 1
 - Manual update given topology update for Subnet 1

Problem #1: Improper Block (2)

Problem #2: Misbehaved Router

□If Router 3 misbehaves or is compromised

◆Router 3 does not conduct SAV functionality

◆Spoofing traffic from subnet 3 cannot be blocked by downstream routers, such as Router 4

Problem #3: Misaligned Incentive

Requirements for New Intra-domain SAV

- ■Requirement #1: SAV mechanism should discover the real data-plane forwarding path among routers
 - ◆Avoids improper block under asymmetric routing
- □Requirement #2: SAV mechanism should be deployed in more routers than only the first-hop router (ingress filtering)
 - ◆Increases the resilience against router's misbehavior
- □Requirement #3: SAV mechanism should disseminate the prefixes of deployed areas as far as possible
 - ◆Helps block traffic which spoof these prefixes as close to the source as possible
 - ◆Provides incentives to the deployed areas

A Typical Inter-domain Scenario

- □AS1, AS2, AS4 deploy interdomain SAV mechanism (EFP-uRPF [RFC 8704])
- ■AS3 and AS5 do not deploy interdomain SAV mechanism
- □EFP-uRPF works at ASBR for inbound traffic
 - ◆Algorithm A: each customer interface independently learns the prefixes by BGP update message
 - ◆Algorithm B: each customer interface shares the learned prefix information

Problem #1: Improper Block

- ■Assuming AS1 sends traffic to AS4 along the path AS1->AS2->AS4
- □If AS4 runs EFP-uRPF Algorithm A
 - ◆Improper block at Int 1
- □If AS4 runs EFP-uRPF Algorithm B
 - ◆If AS3 is customer of AS4: no problem
 - ◆If AS3 is peer of AS4: improper block at Int 1

Problem #2: Ineffective Defense

■An example of reflective DDoS attack

◆Attacker: AS5

◆Reflective server: AS4

♦ Victim: AS1

■AS4 cannot block the spoofing traffic from AS5

◆EFP-uRPF do not work at provider interface

Deployed AS

Undeployed AS

Problem #3: Misaligned Incentive

- □AS5 can launch reflective DDoS attack for AS4
- ■AS2 cannot launch
 reflective DDoS attack for
 AS5
- □Deployed ASes are not protected from being attacked by undeployed ASes
- ■ASes do not benefit from deploying SAV mechanism

Requirements for New Inter-domain SAV

- ■Requirement #1: SAV mechanism should discover the real data-plane forwarding path among ASes
 - ◆ Avoids improper block under asymmetric routing
- □Requirement #2: SAV mechanism should enable all-direction validation
 - ◆EFP-uRPF (BAR-SAV) only works in customer/peering interfaces
 - ◆Most attacking traffic come from remote ASes via provider interfaces
- ■Requirement #3: SAV mechanism should disseminate the prefixes of deployed ASes as far as possible
 - ◆Helps block traffic which spoof these prefixes as close to the source as possible
 - ◆Provides incentives to the deployed ASes

Outline

- **□**Background
- □Gap Analysis & Requirement
- **□**SAVNET Solution
- **DIETF SAVNET WG**

Basic Idea of SAVNET

- □[Resilience:] Each router builds a SAV table to validate source addresses
 - ◆If prefixes are not learned in the SAV table, the incoming packet is permitted
 - ◆If prefixes are learned in the SAV table but incoming interface of a packet does not match, the packet is blocked
 - ◆More resilient than single-hop checking at ingress routers
- □[Correctness:] Routers' SAV tables follow the real forwarding path in the data plane
 - ◆Ensure correct validation even with asymmetric routing
- □[Incentive:] Prefixes of deployed areas (subnets, ASes) are disseminated as far as possible
 - ◆Traffic forging these prefixes can be blocked as close to the source as possible
 - ◆Mitigate reflective DDoS attack targeting at these prefixes
- □[Cost:] Control-plane protocol extension, without data-plane packet modification
 - ◆Existing IGP/BGP routing protocols are extended to carry the necessary information to build the SAV tables in routers

SAV Table in SAVNET Routers

SAVNET Protocol Architecture to Generate SAV Tables

□SAVNET Protocol Architecture

- ◆Discovering the real data-plane forwarding path via hop-by-hop prefix notification, and generating SAV tables in routers along the path
- ◆Separating the protocol into an intra-domain part and an inter-domain part, both sharing the same high-level idea

□Terminologies

- ◆Node: A router in intra-domain SAVNET or an AS in inter-domain SAVNET
- ◆ Prefix notification: The process by which a node notifies the incoming direction of its source prefixes to all the other nodes in the network
- ◆During prefix notification, each node conducts one of the three operations
 - ➤ Message origination: A node generates original notification messages
 - ➤ Message relaying: A node generates relaying notification messages after receiving a notification message
 - ➤ Message termination: A node terminates the received notification message

SAVNET Notification Message Format

The SAVNET notification message contains two main fields

■Source prefix field

- ◆This field contains the source prefixes of the initial node
- ◆When receiving a message, the node generates SAV rules for the source prefixes
- ◆This field remains unchanged during the prefix notification process

■Propagation scope field

- ◆This field contains a list of destination prefixes which take the neighboring node as the next hop (from FIB)
- ◆This field is used to discover the real data-plane forwarding path
- ◆This field changes hop by hop during the prefix notification process

An Example of SAVNET Protocol Workflow (1)

Node 5

P5

Node 3

The process of prefix notification for P1

Node 1 conducts message origination since P1 is the source prefix of Node 1

- □From Node 1's FIB, P2, P4, P6, P7 take Node 2 as the next hop, so Node 1 generates an original notification message to Node 2
 - ◆Message from Node 1 to Node 2
 - ➤ Source prefix → P1
 - ➤ Propagation scope → P2, P4, P6, P7

An Example of SAVNET Protocol Workflow (1)

	FIB for Node 1		
	Dest Prefix	Next hop	
	P2	Node 2	
<	P3	Node 3	
	P4	Node 2	
<	P5	Node 3	>
	P6	Node 2	
	P7	Node 2	

The process of prefix notification for P1

Node 1 conducts message origination since P1 is the source prefix of Node 1

- □From Node 1's FIB, P3, P5 take Node 3 as the next hop, so Node 1 generates an original notification message to Node 3
 - ◆Message from Node 1 to Node 3
 - ➤ Source prefix → P1
 - ➤ Propagation scope → P3, P5

An Example of SAVNET Protocol Workflow (1)

FIB for	Node 1
Dest Prefix	Next hop
P2	Node 2
Р3	Node 3
P4	Node 2
P5	Node 3
P6	Node 2
P7	Node 2

The process of prefix notification for P1

Node 1 conducts message origination since P1 is the source prefix of Node 1

□ From Node 1's FIB, no prefix takes Node 7 as the next hop, so Node 1 does not send any notification message to Node 7

An Example of SAVNET Protocol Workflow (2)

FIB for Node 2		
Dest Prefix	Next hop	
P1	Node 1	
Р3	Node 1	
P4	Node 4	
P5	Node 4	
P6	Node 4	
P7	Node 7	

2.1 Node 2 4.1 Node 4 P2 P4 6.2 Node 1 Node 7 6.1 Node 6 P1 P6 P6 Node 3 5.1 Node 5 P3 P5

The process of prefix notification for P1

When Node 2 receives the message from Node 1 at port 2.1

- ◆Message from Node 1 to Node 2
 - ➤ Source prefix → P1
 - ➤ Propagation scope → P2, P4, P6, P7
- ■Node 2 generates the SAV rule for source prefix P1
 - ◆ < source prefix P1, incoming port 2.1 >

An Example of SAVNET Protocol Workflow (2)

	FIB for Node 2		
	Dest Prefix	Next hop	
	P1	Node 1	
	Р3	Node 1	
<	P4	Node 4	
	P5	Node 4	
<	P6	Node 4/7	
	P7	Node 7	

The process of prefix notification for P1

When Node 2 receives the message from Node 1 at port 2.1

- ◆Message from Node 1 to Node 2
 - ➤ Source prefix → P1
 - ➤ Propagation scope → P2, P4, P6, P7
- □From Node 2's FIB, P4, P6 take Node 4 as the next hop, so Node 2 conducts message relaying and generates a relaying notification message to Node 4
 - ◆Message from Node 2 to Node 4
 - ➤ Source prefix → P1
 - ➤ Propagation scope → P4, P6

An Example of SAVNET Protocol Workflow (2)

FIB for Node 2		
Next hop		
Node 1		
Node 1		
Node 4		
Node 4		
Node 4/7		
Node 7		
	Next hop Node 1 Node 1 Node 4 Node 4 Node 4/7	

The process of prefix notification for P1

When Node 2 receives the message from Node 1 at port 2.1

- ◆Message from Node 1 to Node 2
 - ➤ Source prefix → P1
 - ➤ Propagation scope → P2, P4, P6, P7
- □From Node 2's FIB, P6, P7 take Node 7 as the next hop, so Node 2 conducts message relaying and generates a relaying notification message to Node 7
 - ◆Message from Node 2 to Node 7
 - ➤ Source prefix → P1
 - ➤ Propagation scope → P6, P7

An Example of SAVNET Protocol Workflow (3)

	FIB for Node 4	
	Dest Prefix	Next hop
	P1	Node 2
	P2	Node 2
	P3	Node 2
	P5	Node 6
<	P6	Node 6
	P7	Node 2

2.1 Node 2 4.1 Node 4 P2 P4 6.2 Node 1 Node 7 P6 P6 Node 3 5.1 Node 5 P3 P5

The process of prefix notification for P1

When Node 4 receives the message from Node 2 at port 4.1

- ◆Message from Node 2 to Node 4
 - ➤ Source prefix → P1
 - ➤ Propagation scope → P4, P6
- ■Node 4 generates the SAV rule for source prefix P1
 - ◆ < source prefix P1, incoming port 4.1 >
- □From Node 4's FIB, P6 takes Node 6 as the next hop, so Node
 - 4 conducts message relaying and generates a relaying
 - notification message to Node 6
 - ◆Message from Node 4 to Node 6
 - ➤ Source prefix → P1
 - ➤ Propagation scope → P6

An Example of SAVNET Protocol Workflow (4)

FIB for Node 7		
Dest Prefix	Next hop	
P1	Node 1	
P2	Node 2	
Р3	Node 1	
P4	Node 2	
P5	Node 6	
P6	Node 6	

The process of prefix notification for P1

When Node 7 receives the message from Node 2 at port 7.1

- ◆Message from Node 2 to Node 7
 - ➤ Source prefix → P1
 - \triangleright Propagation scope \rightarrow P6, P7
- ■Node 7 generates the SAV rule for source prefix P1
 - ◆ < source prefix P1, incoming port 7.1 >
- □From Node 7's FIB, P6 takes Node 6 as the next hop, so Node
 - 7 conducts message relaying and generates a relaying
 - notification message to Node 6
 - ◆Message from Node 7 to Node 6
 - ➤ Source prefix → P1
 - ➤ Propagation scope → P6

An Example of SAVNET Protocol Workflow (5)

FIB for Node 4		
Dest Prefix	Next hop	
P1	Node 2	
P2	Node 2	
Р3	Node 2	
P5	Node 6	
P6	Node 6	
P7	Node 2	

The process of prefix notification for P1

When Node 6 receives the message from Node 4 at port 6.2 and the message from Node 7 at port 6.1

- ◆Message from Node 4 to Node 6
 - ➤ Source prefix → P1
 - ➤ Propagation scope → P6
- ◆Message from Node 7 to Node 6
 - ➤ Source prefix → P1
 - ➤ Propagation scope → P6
- ■Node 6 generates the SAV rule for source prefix P1
 - ◆ < source prefix P1, incoming port 6.1 and 6.2 >
- ■Node 6 conducts message termination because P6 is the source prefix of Node 6

An Example of SAVNET Protocol Workflow (6)

FIB for Node 3		
Dest Prefix	Next hop	
P1	Node 1	
P2	Node 1	
P4	Node 5	
P5	Node 5	
P6	Node 5	
P7	Node 1	

2.1 Node 2 4.1 Node 4 P2 P4 6.2 Node 1 Node 7 Node 6 P1 P6 P6 Node 3 Node 5 P5

The process of prefix notification for P1

When Node 3 receives the message from Node 1 at port 3.1

- ◆Message from Node 2 to Node 3
 - ➤ Source prefix → P1
 - ➤ Propagation scope → P3, P5
- ■Node 3 generates the SAV rule for source prefix P1
 - ◆ < source prefix P1, incoming port 3.1 >
- □From Node 3's FIB, P5 takes Node 5 as the next hop, so Node
 - 3 conducts message relaying and generates a relaying
 - notification message to Node 5
 - ◆Message from Node 3 to Node 5
 - ➤ Source prefix → P1
 - ➤ Propagation scope → P5

An Example of SAVNET Protocol Workflow (7)

FIB for Node 3		
Dest Prefix	Next hop	
P1	Node 1	
P2	Node 1	
P4	Node 5	
P5	Node 5	
P6	Node 5	
P7	Node 1	

The process of prefix notification for P1

When Node 5 receives the message from Node 3 at port 5.1

- ◆Message from Node 3 to Node 5
 - ➤ Source prefix → P1
 - ➤ Propagation scope → P5

■Node 5 generates the SAV rule for source prefix P1

- ◆ < source prefix P1, incoming port 5.1 >
- ■Node 5 conducts message termination because P5 is the source prefix of Node 5

During the prefix notification, each node generates accurate SAV rules for P1 and receives only one message except for multi-path routing.

SAVNET Update

□Periodic update

◆Each initial node generates protocol messages periodically

□Triggered update

◆When routing state changes, the initial node generates protocol messages to add updated SAV rules or delete outdated SAV rules for the affected nodes

We suggest intra-domain SAVNET supports both periodic update and triggered update, while inter-domain SAVNET only supports triggered update

Outline

- **□**Background
- □Gap Analysis & Requirement
- **□**SAVNET Solution
- **DIETF SAVNET WG**

IETF SAVNET WG

- □SAVNET BOF, IETF 113, Mar 24, 2022
 - ◆Proponent: Dan Li (Tsinghua University), Jianping Wu (Tsinghua University), Lancheng Qin (Tsinghua University), Mingqing Huang (Huawei), etc.
- ■SAVNET WG, formed in Jun 17, 2022
 - ◆Name: Source Address Validation in Intra-domain and Inter-domain Networks
 - ◆Acronym: savnet
 - ◆Area: Routing Area (RTG)
 - ◆Chairs: Aijun Wang, Joel M. Halpern
 - ◆Mailing list: <u>savnet@ietf.org</u>
- □First SAVNET WG meeting, IETF 114, July 25, 2022

Thanks!